Einleitung:

In diesem Projekt habe ich ein vielseitiges Programm entwickelt, das sich mit
Anpassungen auf eine Vielzahl von logistischen Problemen anwenden lasst. Das
zentrale Konzept des Programmes besteht darin, einen Score zu berechnen - eine
numerische Bewertung, die beispielsweise die Ubereinstimmung mit bestimmten
Kriterien oder die Prioritat eines Ziels reprasentiert. Z.b. in einem Aufzugssystem, steht
der Score fur die Prioritat einer Etage. Dieser Wert wird anschlieBend genutzt, um die
bestmdgliche Entscheidung zur Zielerreichung zu treffen.

Fur die Umsetzung habe ich die Lua-Programmiersprache verwendet, die sich
besonders gut fur flexible und effiziente Programmierung eignet. Zur
Veranschaulichung und besseren Visualisierung der Funktionalitat nutze ich eine
modifizierte Version des beliebten Spiels Minecraft. Diese Modifikation erlaubt es, die
Prinzipien und Ablaufe meines Programms in einer interaktiven Umgebung darzustellen
und zu testen.

Die Gewichtungen in der Berechnung des Scores konnen Manuell oder mit einer
Funktion automatisch festlegen werden. Das heiBt der Algorithmus passt sich an um
das bestmogliche Ergebnis zu erhalten. Um dies zu optimieren wird in manchen
Beispielen eine simple version von Maschinlerning angewendet.

Beispiel 1: Aufzug

In diesem Beispiel steuert das Programm den Aufzug nicht direkte, stattdessen sendet
es Befehle an einen Computer, der dann wiederum den Aufzug zur im Befehl
spezifizierten Etage fahrt. Man muss auseredem auch wissen in diesem Beispiel wurde
man die Etage bei dem Rufen des Aufzuges festlegen um ein effizientes Ergebnis zu
erhalten.

Das Beispiel hat drei Etagen und eine Beliebige Anzahl an Leuten die auf den Etagen
verteilt sind:

Uber den Personen steht wohin sie mochten.

“[1” ist der lehre Aufzug.



Score: 2

3 oo L]

Score: 0
1
Distant zum Aufzug: 1
(-1 Score)
Score: 0

3 3
Distanz zum Aufzug: 2
©E (25core

Im nachsten Schritt gehen die Leute in den Aufzug. Es ist wichtig das die Leute im

Aufzug mehr priorisiert werden damit der Aufzug nicht zu voll wird, deshalb werden sie
doppelt gezahlt. Wo die Personen hin wollen, ist erst relevant wenn sie im Aufzug sind.
Es werden auBerdem nur gezahlt wie viele Leute in den Etagen und in dem Aufzug sind.

Score: 0 Im Aufzug:

S ©0

Score: 2

1
2 @ Distanz zum Aufzug: 1

(-1 Score)

Score: 2

3 3
Distanz zum Aufzug: 2
©E (2500t

Als nachstes fahrt der Aufzug zu Etage 1 da diese als erstes von dem Computer
wahrgenommen* wird. Nun steigt eine Person aus und zwei ein:



Score: 2

3 Distanz zum Aufzug: 2

(-2 Score)

Score: 2

1
2 @ Distanz zum Aufzug: 1

(-1 Score)

Score: 0 Im Aufzug:

1 90O

Nun wirde der Aufzug zu 2, dann 3 fahren. In dem Programm werden auch noch weitere
Faktoren wie die Wartezeit genutzt, um das Ziel optimal zu erreichen.

In dem Beispiel in Minecraft nutze ich ComputerCraft um den Aufzug zu steuern und die
Personen auf den Etagen darzustellen.

Beispiel 2: Sotierer

Es lasst sich das selbe Prinzip auf ein Sortieralgorytmus anwenden. Dieser sortiert nicht
nur die Gleichen sachen zusammen sondern nach ahnlichkeit:

Fisch Gefrierfach:
Eis Fisch, Eis, Pizza
Apfel EEEEEEED  Opstiorh:
Pizza Apfel, Banane
Banane

Im vergleich zum Aufzug Beispiel ersetzen die Gegenstande die Personen und das
Gefrierfach/Obstkorb die Etagen.

Dies konnte z.B. auf Waren, Personen und Daten anwenden.



Beispiel 3: Navigator

In diesem Beispiel bewegt ein separaten Pfadfinealgorytmus um den besten weg zu
einem der Angegebenen Zielpunkte. Mein Algorithmus nutzt das selbe Prinzip um die
“Fahrzeuge” bewegen, er sendet den “Fahrzeugen” befehle die diese dann Ausfuhren.



