
Einleitung:

In diesem Projekt habe ich ein vielseitiges Programm entwickelt, das sich mit
Anpassungen auf eine Vielzahl von logistischen Problemen anwenden lässt. Das
zentrale Konzept des Programms besteht darin, einen Score zu berechnen – eine
numerische Bewertung, die beispielsweise die Übereinstimmung mit bestimmten
Kriterien oder die Priorität eines Ziels repräsentiert. Z.b. in einem Aufzugssystem, steht
der Score für die Priorität einer Etage. Dieser Wert wird anschließend genutzt, um die
bestmögliche Entscheidung zur Zielerreichung zu treffen.

Für die Umsetzung habe ich die Lua-Programmiersprache verwendet, die sich
besonders gut für flexible und effiziente Programmierung eignet. Zur
Veranschaulichung und besseren Visualisierung der Funktionalität nutze ich eine
modifizierte Version des beliebten Spiels Minecraft. Diese Modifikation erlaubt es, die
Prinzipien und Abläufe meines Programms in einer interaktiven Umgebung darzustellen
und zu testen.

Die Gewichtungen in der Berechnung des Scores können Manuell oder mit einer
Funktion automatisch festlegen werden. Das heißt der Algorithmus passt sich an um
das bestmögliche Ergebnis zu erhalten. Um dies zu optimieren wird in manchen
Beispielen eine simple version von Maschinlerning angewendet.

Beispiel 1: Aufzug

In diesem Beispiel steuert das Programm den Aufzug nicht direkte, stattdessen sendet
es Befehle an einen Computer, der dann wiederum den Aufzug zur im Befehl
spezifizierten Etage fährt. Man muss auseredem auch wissen in diesem Beispiel würde
man die Etage bei dem Rufen des Aufzuges festlegen um ein effizientes Ergebnis zu
erhalten.

Das Beispiel hat drei Etagen und eine Beliebige Anzahl an Leuten die auf den Etagen
verteilt sind:

Über den Personen steht wohin sie möchten.

“[]” ist der lehre Aufzug.

3
Score: 2
 1 2

🙂🙂 []
2

Score: 0
 1

🙂

Distant zum Aufzug: 1
(-1 Score)

1
Score: 0
 3 3

🙂🙂

Distanz zum Aufzug: 2
(-2 Score)

Im nächsten Schritt gehen die Leute in den Aufzug. Es ist wichtig das die Leute im
Aufzug mehr priorisiert werden damit der Aufzug nicht zu voll wird, deshalb werden sie
doppelt gezählt. Wo die Personen hin wollen, ist erst relevant wenn sie im Aufzug sind.
Es werden außerdem nur gezählt wie viele Leute in den Etagen und in dem Aufzug sind.

3
Score: 0 Im Aufzug:

 1 2

🙂🙂

2
Score: 2
 1

🙂

Distanz zum Aufzug: 1
(-1 Score)

1
Score: 2
 3 3

🙂🙂

Distanz zum Aufzug: 2
(-2 Score)

Als nächstes fährt der Aufzug zu Etage 1 da diese als erstes von dem Computer
wahrgenommen* wird. Nun steigt eine Person aus und zwei ein:

3
Score: 2

Distanz zum Aufzug: 2
(-2 Score)

2
Score: 2
 1

🙂

Distanz zum Aufzug: 1
(-1 Score)

1
Score: 0 Im Aufzug:

 2 3 3

🙂🙂🙂

Nun würde der Aufzug zu 2, dann 3 fahren. In dem Programm werden auch noch weitere
Faktoren wie die Wartezeit genutzt, um das Ziel optimal zu erreichen.

In dem Beispiel in Minecraft nutze ich ComputerCraft um den Aufzug zu steuern und die
Personen auf den Etagen darzustellen.

Beispiel 2: Sotierer

Es lässt sich das selbe Prinzip auf ein Sortieralgorytmus anwenden. Dieser sortiert nicht
nur die Gleichen sachen zusammen sondern nach ähnlichkeit:

Fisch

Eis

Apfel

Pizza

Banane

Im vergleich zum Aufzug Beispiel ersetzen die Gegenstände die Personen und das
Gefrierfach/Obstkorb die Etagen.

Dies könnte z.B. auf Waren, Personen und Daten anwenden.

Gefrierfach:

Fisch, Eis, Pizza

 Obstkorb:

Apfel, Banane

Beispiel 3: Navigator

In diesem Beispiel bewegt ein separaten Pfadfinealgorytmus um den besten weg zu
einem der Angegebenen Zielpunkte. Mein Algorithmus nutzt das selbe Prinzip um die
“Fahrzeuge” bewegen, er sendet den “Fahrzeugen” befehle die diese dann Ausführen.

